Performance Evaluation
Performance Evaluation in LLMIR
LLMIR includes comprehensive benchmarking and evaluation methodologies to measure its impact on LLM inference performance across different models and hardware platforms.
Benchmark Framework ¶
LLMIR will provide a dedicated benchmarking framework to evaluate performance improvements:
// LLMIR Benchmark API (Planned)
class LLMIRBenchmark {
public:
// Configure benchmark parameters
void setModel(const std::string& modelPath);
void setHardware(const std::string& hardware);
void setSequenceLength(int length);
void setBatchSize(int batchSize);
void setQuantizationMode(QuantMode quantMode);
void setKVCacheStrategy(KVCacheMode kvMode);
// Run benchmarks
BenchmarkResult runThroughputTest(int iterations);
BenchmarkResult runLatencyTest(int iterations);
BenchmarkResult runMemoryTest();
// Compare with baselines
ComparisonResult compareWithBaseline(const std::string& baselineFramework);
};
Key Performance Metrics ¶
LLMIR will track and optimize for several key performance metrics:
Throughput Metrics ¶
- Tokens per Second (TPS): Number of output tokens generated per second
- Requests per Second (RPS): Number of inference requests processed per second
- Effective TPS: Combined throughput across multiple devices/nodes
Latency Metrics ¶
- First Token Latency: Time from request reception to first token generation
- Inter-Token Latency: Time between consecutive token generations
- End-to-End Latency: Total time from request to completion
- Attention Computation Latency: Time spent in attention operations
- KV Cache Access Latency: Time spent accessing the KV cache
Memory Metrics ¶
- Peak Memory Usage: Maximum memory consumed during inference
- Memory Efficiency: Ratio of active tensors to allocated memory
- KV Cache Size: Memory consumed by the key-value cache
- Memory Bandwidth Utilization: Efficiency of memory access patterns
Scaling Metrics ¶
- Strong Scaling: Speedup when increasing devices for fixed workload
- Weak Scaling: Performance with fixed workload per device while increasing devices
- Device Utilization: Percentage of device compute capacity used
Benchmark Suite ¶
LLMIR will include a comprehensive benchmark suite with:
Model Selection ¶
- Size Variants: Small (7B), Medium (13B), Large (70B+)
- Architecture Types: Decoder-only, Encoder-decoder
- Model Families: Llama, Mistral, Falcon, etc.
Workload Patterns ¶
- Text Generation: Standard autoregressive generation
- Chat Completion: Multi-turn dialogue generation
- Long Context Processing: Tests with very long input contexts
- Mixed Batch Sizes: Varying concurrent request volumes
Hardware Targets ¶
- NVIDIA GPUs: A100, H100, RTX series
- AMD GPUs: MI100, MI250, MI300
- x86 CPUs: Intel Xeon, AMD EPYC
- ARM CPUs: AWS Graviton, Apple Silicon
Analysis Tools ¶
LLMIR will provide tools for detailed performance analysis:
Profiling ¶
// LLMIR Profiler API (Planned)
class LLMIRProfiler {
public:
// Start/stop profiling
void startProfiling(const std::string& name);
void stopProfiling();
// Event tracking
void recordEvent(const std::string& name);
void markOperationStart(const std::string& opName);
void markOperationEnd(const std::string& opName);
// Analysis
ProfileData getOperationBreakdown();
ProfileData getMemoryUsageTimeline();
ProfileData getDeviceUtilization();
// Export
void exportChromeTraceFormat(const std::string& filename);
void exportReport(const std::string& filename);
};
Visualization ¶
The benchmarking system will include visualizations to help understand performance:
- Operation timeline views
- Memory usage graphs
- Compute/memory utilization heatmaps
- Performance comparison charts
Baseline Comparisons ¶
LLMIR performance will be compared against several baselines:
- vLLM Native: Performance compared to unmodified vLLM
- SGLang Native: Performance compared to unmodified SGLang
- HuggingFace Transformers: Performance relative to standard implementations
- TensorRT-LLM: Comparison with NVIDIA’s optimized framework
- Native Hardware Libraries: Comparison with vendor-specific implementations
Future Directions ¶
As LLMIR matures, the performance evaluation framework will expand to include:
- Automated Regression Testing: Continuous performance monitoring
- Bottleneck Identification: Automatic detection of performance limitations
- Optimization Recommendation: Suggestions for performance improvements
- Hardware-Specific Insights: Targeted optimizations based on profiling
- Performance Modeling: Predictive modeling of optimization impacts
This performance evaluation system is under development as part of the LLMIR project.