LLMIR

Version 0.0.1

Large Language Model IR Compiler Framework

Performance Evaluation

Performance Evaluation in LLMIR

LLMIR includes comprehensive benchmarking and evaluation methodologies to measure its impact on LLM inference performance across different models and hardware platforms.

Benchmark Framework 

LLMIR will provide a dedicated benchmarking framework to evaluate performance improvements:

// LLMIR Benchmark API (Planned)
class LLMIRBenchmark {
public:
  // Configure benchmark parameters
  void setModel(const std::string& modelPath);
  void setHardware(const std::string& hardware);
  void setSequenceLength(int length);
  void setBatchSize(int batchSize);
  void setQuantizationMode(QuantMode quantMode);
  void setKVCacheStrategy(KVCacheMode kvMode);
  
  // Run benchmarks
  BenchmarkResult runThroughputTest(int iterations);
  BenchmarkResult runLatencyTest(int iterations);
  BenchmarkResult runMemoryTest();
  
  // Compare with baselines
  ComparisonResult compareWithBaseline(const std::string& baselineFramework);
};

Key Performance Metrics 

LLMIR will track and optimize for several key performance metrics:

Throughput Metrics 

  • Tokens per Second (TPS): Number of output tokens generated per second
  • Requests per Second (RPS): Number of inference requests processed per second
  • Effective TPS: Combined throughput across multiple devices/nodes

Latency Metrics 

  • First Token Latency: Time from request reception to first token generation
  • Inter-Token Latency: Time between consecutive token generations
  • End-to-End Latency: Total time from request to completion
  • Attention Computation Latency: Time spent in attention operations
  • KV Cache Access Latency: Time spent accessing the KV cache

Memory Metrics 

  • Peak Memory Usage: Maximum memory consumed during inference
  • Memory Efficiency: Ratio of active tensors to allocated memory
  • KV Cache Size: Memory consumed by the key-value cache
  • Memory Bandwidth Utilization: Efficiency of memory access patterns

Scaling Metrics 

  • Strong Scaling: Speedup when increasing devices for fixed workload
  • Weak Scaling: Performance with fixed workload per device while increasing devices
  • Device Utilization: Percentage of device compute capacity used

Benchmark Suite 

LLMIR will include a comprehensive benchmark suite with:

Model Selection 

  • Size Variants: Small (7B), Medium (13B), Large (70B+)
  • Architecture Types: Decoder-only, Encoder-decoder
  • Model Families: Llama, Mistral, Falcon, etc.

Workload Patterns 

  • Text Generation: Standard autoregressive generation
  • Chat Completion: Multi-turn dialogue generation
  • Long Context Processing: Tests with very long input contexts
  • Mixed Batch Sizes: Varying concurrent request volumes

Hardware Targets 

  • NVIDIA GPUs: A100, H100, RTX series
  • AMD GPUs: MI100, MI250, MI300
  • x86 CPUs: Intel Xeon, AMD EPYC
  • ARM CPUs: AWS Graviton, Apple Silicon

Analysis Tools 

LLMIR will provide tools for detailed performance analysis:

Profiling 

// LLMIR Profiler API (Planned)
class LLMIRProfiler {
public:
  // Start/stop profiling
  void startProfiling(const std::string& name);
  void stopProfiling();
  
  // Event tracking
  void recordEvent(const std::string& name);
  void markOperationStart(const std::string& opName);
  void markOperationEnd(const std::string& opName);
  
  // Analysis
  ProfileData getOperationBreakdown();
  ProfileData getMemoryUsageTimeline();
  ProfileData getDeviceUtilization();
  
  // Export
  void exportChromeTraceFormat(const std::string& filename);
  void exportReport(const std::string& filename);
};

Visualization 

The benchmarking system will include visualizations to help understand performance:

  • Operation timeline views
  • Memory usage graphs
  • Compute/memory utilization heatmaps
  • Performance comparison charts

Baseline Comparisons 

LLMIR performance will be compared against several baselines:

  • vLLM Native: Performance compared to unmodified vLLM
  • SGLang Native: Performance compared to unmodified SGLang
  • HuggingFace Transformers: Performance relative to standard implementations
  • TensorRT-LLM: Comparison with NVIDIA’s optimized framework
  • Native Hardware Libraries: Comparison with vendor-specific implementations

Future Directions 

As LLMIR matures, the performance evaluation framework will expand to include:

  • Automated Regression Testing: Continuous performance monitoring
  • Bottleneck Identification: Automatic detection of performance limitations
  • Optimization Recommendation: Suggestions for performance improvements
  • Hardware-Specific Insights: Targeted optimizations based on profiling
  • Performance Modeling: Predictive modeling of optimization impacts

This performance evaluation system is under development as part of the LLMIR project.